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ABSTRACT 
 

The Home Energy Saver (HES) suite offers popular online simulation tools that enable 
U.S. homeowners and energy professionals to rigorously evaluate home energy use and develop 
recommendations on how energy can be saved across all end uses. The underlying analytical 
system is also available as a web service to power third-party energy analysis tools. Given the 
system’s diverse uses, it is important that the simulation is robust and accurate. While the 
engineering methods are extensively documented and subjected to peer review, it is useful to 
evaluate how well HES predicts energy use in occupied homes. In this paper we compare 
measured to predicted energy use for 428 occupied homes in Oregon, Florida, and Wisconsin, 
representing a diversity building types, energy intensities, and occupant behaviors. We show 
how audit depth, knowledge of operational details, and sub-metered energy data can be valuable 
to the process of improving model accuracy—particularly for individual households, where 
energy use can vary three-fold for homes with virtually identical physical characteristics. 
Accuracy is strongly proportional to the quality and completeness of inputs, yet audit data are 
often deficient. Predictions are best—and the tendency of models to over-predict actual 
consumption is mitigated—when behavioral inputs match actual conditions. When averaged 
across groups of homes, HES predicts energy use within 1% of actual consumption when 
physical characteristics and occupant behavior are well accounted for. New research findings 
promise to confer even greater accuracy as they are incorporated into simulation tools. 

 
Introduction 

 
Energy analysis tools are integral to the process of identifying and implementing building 

energy savings measures. Modeling applications can vary from the fine-grain component- or 
end-use level to the whole building. User groups include homeowners and renters designers, 
auditors, home performance contractors, and policy analysts.  

The Home Energy Saver (HES) web-based simulation tools provide these diverse 
audiences with powerful means of employing state-of-the-art, non-proprietary residential energy 
calculation tools to support decision-making. The tools integrate a variety of best-practice 
models, algorithms, and data sources assembled over many decades at Lawrence Berkeley 
National Laboratory, other DOE National Labs, utilities, and elsewhere within the energy 
efficiency communities. Historically, the use of such tools had required greater expertise and 
knowledge of energy and building technologies and computing than possessed by target 
audiences. These barriers have been gradually overcome by making these tools available via the 
internet while providing user-friendly interfaces; and incorporating extensive “smart” defaults.  

Development of HES began in 1994, and the first web-based version of the tool was 
released in 1996 (Mills 1997). In 2009, the addition of web services enabled third-party software 
developers to incorporate the underlying models and data into their own user interfaces (Mills 
and Mathew 2012). The engineering methods and assumptions behind the hourly DOE-2.1E 
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simulation engine and non-HVAC analysis methods used by HES are extensively documented in 
the public domain and subjected to peer review (Mills et al., 2007). The HES suite has been 
expanded to compute asset ratings underpinning DOE’s Home Energy Score Program (Bourassa 
et al., 2012), and multifamily models have been added as well (Mills and Mathew 2012). 

It is important that simulations accurately capture the energy use attributed both to 
building construction and to occupant behavior. We assessed the HES Consumer and 
Professional tools (hes.lbl.gov and hespro.lbl.gov), which use identical methods and are jointly 
referred to here as “HES.” Roberts et al., (2012) separately assessed the Home Energy Scoring 
Tool (homeenergyscore.lbl.gov), also summarized in Bourassa et al., (2012). We illustrate how 
these validation exercises support continuous refinement of the underlying calculations, and 
summarize important findings in buildings energy research that should confer even greater 
confidence in model predictions as refinements are made to calculations procedures. 

 
Elusive Accuracy 
 

The accuracy of energy analysis tools is a complex issue. A comparison of a range of 
web- and disk-based tools found a three-fold variation in predictions for a given home (Mills 
2003). Assessing the accuracy of tools designed for occupied buildings (such as HES or 
EnergyGauge USA) poses far greater challenges than the case where one model is compared to 
another using hypothetical buildings with stipulated occupancy and operational conditions (e.g., 
BESTEST). Analysts have long called for more validation of audit tools against measured data 
(Pigg 2001). Indeed, accuracy assessments should be an integral part of tool development.  

A multitude of potential sources of perceived inaccuracy occur, ranging from the 
establishment of accurate “ground-truth” measured energy use for comparison, successfully 
collecting audit data and extracting model inputs, and in the intrinsic modeling process itself. 
Moreover, while it is certainly possible for an energy analysis tool to produce exact agreement 
with measured data, it can be challenging to determine if the result emerges inadvertently due to 
fortuitous offsetting errors.  

Various approaches to validating building energy models have been developed. We focus 
here on how well a model—given “accurate” and reasonably complete inputs—predicts the 
measured energy use of occupied homes. This might be referred to as “intrinsic accuracy”. 
Irrespective of approach, many sorts of “noise” can interfere in accuracy assessments, limiting 
usability of the findings.  The following questions must thus be considered: 

 
• What is the intended use of the accuracy assessment? Accuracy assessments can be 

conducted on a one-time basis, but are most useful when applied in a diagnostic fashion 
to inform software development (Polly et al., 2011). The latter requires high-fidelity data 
for forensic identification of the underlying inaccuracies. Accuracy assessments may be 
narrowly focused on heating and cooling loads under standardized operating conditions 
(e.g., fixed thermostat settings) or broadly defined as whole-building final energy use. 

• How is accuracy defined? A recent study identified 10 metrics (Polly et al., 2011). 
Accuracy can be expressed in terms of absolute error from the reference point, a 
proportional error, or a statistical deviation, and applied at the whole-building or end-use 
level. A given absolute error for a low-energy home has a larger proportionate effect than 
the same error on an energy-intensive home. Appropriate metrics should be used. 



 
 

• What level of precision and accuracy is required for the assessment at hand? The 
level of “acceptable” accuracy depends on the intended use of the modeling tool. A tool 
providing qualitative recommendations versus absolute savings estimates requires less 
precision and accuracy than one for investment-grade audits. An asset rating and 
accompanying 10-step score (Roberts et al., 2012), for example, requires less precision 
than an estimate of end-use-level energy consumption inclusive of user behavior.. 

• How inclusive is the assessment? A tool may be accurate in one climate or type of 
building, but not another. Combining a variety of building types, equipment, fuels, 
operating conditions, and geographies can require a large number of parametric 
scenarios. Tools that estimate costs or carbon emissions must account for factors such as 
hourly load shapes, tariffs, and fuel mix. 

• How are the home characteristics and ‘ground truth” energy use defined and 
applied? A model can be compared to other models or to actual buildings, the former at 
best providing only a pseudo-estimate of accuracy. Just as “bad data” can confound an 
analysis of billing information, so too can “bad inputs” confound simulation analyses. 
Rigorous quality control of input data is required to minimize subjective inputs and 
mischaracterization of the actual home and its use. The same weather records should be 
used to normalize bills and to underpin simulations. Great care must be taken to 
understand the implications of comparing billing data (which incorporates behavioral 
influences) to the results of asset-based simulations (based solely on physical building 
attributes) that standardize occupant behavior.  

• What types of errors are sought, and how are they to be interpreted? Sources of 
errors can include software defects, inaccurate engineering algorithms, non-representative 
default values or weather data, and gaps in data-collection (Baden 2009). Constrained 
tool input options, e.g., temperature-bands rather than exact choices for set-points, can 
muddle results. Lack of field data on (e.g., whether or not basements are conditioned) can 
necessitate inaccurate default assumptions or stipulating demand for entire end uses.  

• Can multiple tools be properly compared to one another? Applying similar inputs 
into dissimilar tools can produce bias. For example, one tool may offer three choices for 
insulation levels (e.g. none, moderate, or high) while another accepts an exact R-value. 

• How can inaccuracies not associated with the software be isolated? Tool developers 
are generally most interested in the intrinsic accuracy of their models, i.e., with fully 
accurate inputs. However, there are numerous sources of error outside of the modeling 
process. These include, actual versus occupant reported thermostat settings, unknown 
defects in home workmanship, imperfections in weather-normalization techniques, 
mismatches between weather stations and the home location, differences between 
equipment nameplate energy use and actual in-situ performance, reliance on default 
values, and errors in field data collection. In our first data cohort, below, ten homes had 
identical refrigerators, one of which used 50% (400 kWh/year) more energy than the 
average of the others due to a door gasket had been torn upon installation. Errors in data 
entry can also be important. Chapman (1991) observed prediction errors up to 10% due to 
errors while entering data into the models. Others found variations in results of up to 
7.5% even for asset ratings of identical homes (Pigg 2001), a value that could be higher 
for operational assessments.) 

 



 
 

Many of the aforementioned methodological hazards are illustrated in a widely cited 
assessment of three tools: Home Energy Saver, REM/Rate, and SIMPLE (Earth Advantage 2008; 
Baden 2009). Extensive but sparsely 
documented reliance on defaults rather than 
setting inputs to actual known conditions, 
and use of different weather records for bill 
normalization and simulation confounded 
comparisons to actual consumption and 
likely predetermined the conclusion that 
increasing the number of inputs did not 
improve accuracy. Heavy emphasis on the 
absolute values of errors and consolidated 
average outcomes obscured distinct 
differences in the accuracy of the tools: for 
high-use homes: REM/Rate systematically 
over-predicted, SIMPLE under-predicted, 
while HES displayed symmetry around the 
expected values and lower absolute errors 
across much of the domain (Figure 1). This 
and Energy Trust of Oregon (2012) used a 
vintage-2008 version of HES. 

 
Comparisons of Model Estimates to Measured Data from Actual Homes 

 
There has been a prevailing view that building energy simulations tend to overestimate 

consumption in real homes (Polly et al., 2011; Energy Center of Wisconsin 2000). This is 
important context for the question of the accuracy of HES, and how simulations can be improved 
by comparing their results to measured data. 

The four independent cohorts of field data evaluated here include occupied homes in a 
diversity of climates (Table 1). The datasets have in common high-quality audits with detailed 
information on physical characteristics and actual operational conditions for many of the homes. 
Because our goal is to assess tool accuracy given unambiguous and “accurate” inputs, homes 
were eliminated from the sample if they contained incomplete or suspect data or major 
miscellaneous uses (e.g., unmetered solar, swimming pools, portable heaters) not adequately 
characterized to allow modeling. Homes with minor supplemental wood heating were retained, 
while those with unmeasured primary wood heat were excluded. We then applied data-
completeness filters, ensuring that key inputs were required to be present for a home to be 
included (LBNL 2012a). This quality assurance process resulted in the elimination of 232 homes 
from the raw sample of 660 homes received by LBNL. 

We then exercised the HES model using four increasingly complete sets of input values 
(Table 1) in order to systematically identify how the type and completeness of inputs affects 
accuracy. The key distinction is between Asset analyses (“Rate the home, not the occupant”) and 
Operational analyses, where the physical characteristics of fixed assets and occupant effects plus 
those of lighting and small miscellaneous appliances are comprehensively considered. The most 
complete scenario (Operational) required 31 model inputs, with an additional 27 optional inputs. 
Note that this is far lower than the ~200 possible inputs to HES. 

While not provided in the original study, a visual 
examination suggests that the slopes of regression lines 

(added) would be approximately 0.7, 1.5 and 1.1. A slope 
of 1.0 represents perfect agreement, i.e. where Actual = 

Predicted (Earth Advantage Institute, 2008). 

Figure 1. Predicted Annual Energy Use for 
Three Tools 



 
 

Table 1. Definitions and Constraints of the Four Modeling Scenarios 

  
 
For the two Florida cohorts, input data were obtained from the original audit forms and 

derivative reports. For the Wisconsin and Oregon cohorts, field data were translated into HES 
inputs from REM/Rate model inputs in the National Renewable Energy Laboratory’s Field Data 
Repository (Roberts et al., 2012). Measured energy use is weather-normalized with the same 
weather data employed in the simulation models. While our goal is to identify the intrinsic 
accuracy of HES, free from noise caused by inaccurate or incomplete inputs, judgment and 
approximations used in translating REM/Rate inputs to HES inputs unavoidably introduced error 
compared to an ideal case where audits gathered inputs expressly for HES. Limited audit data for 
lighting and miscellaneous end-use characteristics necessitated some reliance on default values. 

 
Results 

 
Increasing the number of relevant inputs clearly improves Home Energy Saver’s 

predictive power for both electricity and fuel as indicated by declining average error and reduced 
scatter around the prediction indicated by the CV statistic (Table 2 and Figure 2a-b). 
 
Table 2. Sample Characteristics and HES Summary Results for the Four Cohorts of Homes
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Figure 2. HES Accuracy by Inputs (a) and Fuel (b) 

Cohort 1: Intensively metered and highly similar low-income homes in Florida. The highest-
fidelity audit data that we identified are for ten all-electric homes near Homestead, Florida. The 
characteristics of these low-income, Habitat for Humanity homes are described in an earlier 
publication (Parker et al., 1996) and supplementary data (LBNL 2012b). We compared the 
estimates of both HES and Energy Gauge USA (EG) (Parker et al., 1999) to this field data. Both 
tools use the well-documented and well-validated DOE-2.1E simulation engine (Birdsall et al., 
1990) to estimate space-conditioning energy, and different methods for other end uses. 

While the influences of occupant behavior have been observed by building energy 
researchers for more than three decades (Sonderegger 1978), the Homestead dataset is notable in 
showcasing how energy use can vary substantially among virtually identical homes, in this case 
all constructed in 1993 by the same builder. Three are of a simple rectangular design (1250 ft2 of 
conditioned floor area) with four bedrooms. The other seven are three-bedroom homes, five feet 
shorter in the long axis (1100 ft2). All have precisely the same heating and cooling systems 
(SEER 12 two-ton systems with 5 kW of electric strip heat) and the same windows. Despite 
these similarities, variance in workmanship had implications for energy model results, as 
evidenced by the observed variance in air leakage from 1085 to 2257 CFM at 50 pascals 
pressurization (108%). The homes were identical with respect to major installed appliances 
(refrigerator, washer, dryer, electric water heater). Three homes added freezers, which were also 
sub-metered. In addition to the physical similarities of the homes, their location on the same 
neighborhood block (microclimate) makes them an ideal test case for occupant-related impacts. 

Year-long sub-metering at the end-use level (15-minute data) provides an opportunity to 
quantify behavioral drivers with great precision, understand variance and outliers, and pinpoint 
sources of inaccuracies. The homes exhibit a 3-fold variation in measured energy use. Moreover, 
the highest (20,452 kWh/year) and lowest cases (7,257 kWh/year) were both three-bedrooms and 
units, with identical floor area. Variations at the end-use level were often much higher (Figure 3). 
House 2 used no heating, while House 9 used 1,467 kWh over the year. Interestingly, House 9 
was the least energy-intensive home in other respects. 
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HES and EG each predicted average whole-house energy use for the cohort within one 
percent of the measured values (Figure 4). As seen in Figure 5, all but one of the HES 
predictions for individual homes are within 25% of measured annual energy use (in fact, within 
17%), and five are within 10%. Early results helped identify and improve out-of-date default 
values for water heating, and associated appliances. Detailed sub-metered energy data enabled us 
to identify a calculation error for air-handling units, which improved accuracy from a 75% 
under-prediction of that device’s energy use to a 1% over-prediction. 

Asset scenarios estimated the average energy use of the set of homes within 25%, while 
lacking any explanatory power for individual virtually identical homes. The estimates average 
low because they do not consider the relatively high occupancy rates of low-income housing and 
associated influential behavioral factors. That said, for highly uniform houses such as these, 
adding even more details on the physical characteristics yields diminishing returns. On the other 
hand, as seen in Figures 4 and 5b, by incorporating the operational effects of occupant behavior 
(e.g., thermostat management and appliance utilization) predictive power is enhanced to the 
point of essentially perfect on-average agreement—at the whole-building level and by end-use. 

 
Figure 3. Measured Total and End-use Annual Energy for the Homestead Cohort 

 

 
 
Compensating errors can become visible when end-use data are examined. While the 

“Defaults” case initially appears to produce better predictions than the “Asset” cases, it achieves 
this only fortuitously: the fully defaulted house is more than 50% larger than the subject (low-
income) houses, while assuming a more efficient AC than in the actual homes. The default 
assumptions omit an end use (freezers) that is present in some of the homes, while including 
another that is not present (dishwashers).  

!"

#$!!!"

%!$!!!"

%#$!!!"

&!$!!!"

&#$!!!"

%" &" '" (" #" )" *" +" ," %!" -./0"

!"#$%&"'(
)*"+,&-+-,.(

/$"(
01234.&5(

67%$"(89(

12/345/$"678/9":";29<0"="=&0*>?"

@7AB3C9"DE93CF"=%!0#>?"

GFCCHCF"=(0'>?"

ICJF2/CFEBAF"=%0+K?"

L.C5"M"IE5/C"=#!0'>?"

@7AB3C9"NFO25/"=%+0'>?"

PAB"DEBCF"=(0+>?"

-2F"PE5Q7CF"=*0&>?"

PCE45/"=%!0)>?"

@AA725/"=#0&>?"

:);)<9R"S5Q"T9C"=P2/3U1AV".EF2E4A5?"

!"#$%&'($)*+(&%"(,
-'.,"*/+ 0 1 2 3 4 5 6 7 8 09 :%;<

!"#$%&'()'(**"+,-./ 0 1 2 0 2 3 4 3 2 2 450
6785'9,:.;#%'<=<6<'>*((?;-8@'(ABC D3 DD DD D4 D4 04 0E D1 02 0F D0
6785'9,:.;#%'<=<6<'>G%,.;-8@'(ABC 12 DE DH DH 1D D1 DF DH DH D3 DE
IJK'.%#+%&,."&%'>(AB EH2 EH2 EH1 EEL EHH EH1 EHH EHD EHE EHH EH2
J(.'M,.%&'"/%'>8N9,:B 0H EE2 2L EEF 31 0H 40 1F E0 H0 14
O,"-9&:'?(,9/'M,/G%9'+%&'M%%PB 3 3 1 1 L 2 2 0 E3 EH D5H
O,"-9&:'?(,9/'9&;%9'>+%&'M%%PB 3 3 1 1 L E 2 0 E3 EH D5F
=.(7%'>G&/N9,:B 2 F53 E E E F5H3 F53 E53 3 F53 E54
Q7%-'>G&/NM%%PB 2 E H E 2 F E H H E E51
<%?%7;/;(-/ 3 E 2 E E 4 E E E E E5L
C'<%#+%&,."&%/'#%,/"&%9',.'.G%'.G%&#(/.,.@',7%&,8%9'(7%&'/%,/(-



 
 

Figure 4. Average Measured and HES-predicted Annual End-use Breakouts:  
Homestead Cohort 

 
 
The outliers in Figure 5 stem from pronounced differences in home operation. For 

instance one high-use home had problems both with the refrigerator and air conditioning systems 
and the lowest-use house was often vacant while the single mother sometimes stayed with her 
children at her mother’s home, as reflected in the measured hot water use (18 gal/day, ~1/3 of the 
cohort average). Hot water use data (gallons) are generally not available to auditors, and is not an 
input for HES, although we could identify the reasons for deviations in prediction. 

 
Figure 5a-b. Measured vs. HES-predicted Annual Energy Use: Homestead Cohort 
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Figure 6. Average Measured and Predicted Annual End-use Breakouts: Central Florida 
Cohort 

 
Refrigerators, dishwashers, and clothes washers were not individually submetered and are included under the 

“Lighting, plugs, and misc.” category for the Measured case; thus shadings are not comparable with the simulation 
cases for those categories. 

 
Cohort 2: Aggregate of a large representative sample of homes: Central Florida. We 
compared predictions from HES and EG against measured energy use and detailed field audit 
data for a large, statistically drawn sample of 171 all-electric homes in Central Florida (Parker 
2002). In each home, 15-minute electric demand data was obtained for total power, space 
heating, cooling, water heating, refrigerators, laundry, dishwashing, and cooking. Interior and 
exterior temperatures were also recorded. Figure 6 illustrates how the tools predicted total and 
measured end-uses when applied to a “composite” home (individual HES runs were not 
available) that was typical of the audited predominant characteristics in the monitored sample 
(rather than the average of characteristics for each home). The relative similarity in outcomes 
between Asset and Operational cases is expected, as these are averages across a large number of 
homes. Accuracy was, however, highest for the Operational case. 

Both the HES and EG models exhibit excellent operational correspondence (within about 
1% of actual measurements) to the average measured total energy use as well as end-use level 
detail. The models did not adjust for an approximately 2% seasonal vacancy rate in the cohort 
among “snowbird” occupants with primary homes in the north. Thus vacancy rates may be 
another operational feature to be accounted for within future modeling of large-scale samples. 

 
Cohort 3: A non-random sample of homes from Portland and Bend, Oregon. The third 
cohort is drawn from a set of detailed audits for 180 mixed-fuel homes in Oregon, the same 
dataset used in the Energy Performance Score study noted previously (Earth Advantage 2008). 
Detailed audits were performed for each home using the RESNET rating protocol. The sample 
was not representative of the population and did not provide end-use sub-metering, but did 
include a wide range of house ages, multiple heating fuels, and two localities within the state 
(Portland and Bend areas). Accounting for operational factors minimized scatter and improved 
predictions for specific houses, but it was not possible to convert REM/Rate lighting data to HES 
inputs, necessitating reliance on defaults.  
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The Default and Asset cases resulted in substantial overestimates of actual energy use. Full 
operational inputs yielded average estimates within 1% of actual consumption across the cohort 
(Figure 7), with superior fit to that shown in Figure 3. 

 
Figure 7a-b. Measured vs. HES-predicted Annual Energy Use: Oregon Cohort 

 
Horizontal bands for the Defaults case represent two disparate weather locations, the only input variable. 

 
Cohort 4: A representative sample of owner-occupied homes from across Wisconsin. The 
fourth cohort is drawn from a collection of 299 HERS audits conducted using REM/Rate in 
Wisconsin in 1998 on a random sample of mixed-fuel, single-family, owner-occupied homes 
ranging from “mobile homes to mansions” (Energy Center of Wisconsin 2000; Pigg 2001). The 
original analysts found that heating energy use was over-predicted, attributed in part to heavy 
reliance on 68oF default thermostat settings. 
Behavioral factors were identified as key drivers of 
energy use, as indicated by user-reported winter 
thermostat settings in the homes ranging from 59 to 
74oF, and laundry utilization ranging from 1 to 15 
loads per week per household (3 and 8 occupants, 
respectively), zero to half of which utilize a hot-
water cycle. 

 The Defaults case shows negligible 
predictive power for individual homes, albeit good 
on average (Figure 8), although errors for each fuel  
(-34% electricity and +16% for gas) fortuitously 
offset one another. The Asset::Visual case predicts 
high. Increasing the number of physical 
characteristics inputs yielded considerable 
improvement in energy use estimates, with 
significant offsetting errors  
(-13% and +12%, respectively). Lack of sufficient 
audit data precluded an Operational scenario. 
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Summary Findings 
 

Our evaluations showed that it is possible with comprehensive physical and operational 
data to obtain prediction accuracy with the Home Energy Saver to within 1% of energy billing 
records for groups of homes. It is also possible to generally obtain results within +25% for well-
documented individual homes. On the other hand, evaluations using more simplistic "drive-by" 
Asset::Visual audits were unable to provide an unbiased estimate of the sample average much 
less any accounting for house-to-house variation in energy use, sometimes with large errors. The 
"Asset::Full" cases often came close to collective averages—thanks in part to offsetting errors—
but the addition of operational detail minimized scatter and maximized accuracy. In fact, we 
found that proper specification of occupants’ thermostat set points, use intensity of hot water, 
laundry, and cooking equipment were fully as important to prediction accuracy for individual 
homes as were physical characteristics, particularly for similar homes. Including operational data 
resolves a common problem of model over-prediction 
 
The Critical Nature of Model Specification and User Inputs  
 

As revealed in the earlier discussion, the accuracy of any given energy simulation model 
output is dependent on the availability of appropriate and accurate inputs, and the ability of a 
model to utilize those inputs. While it is incumbent on model developers to employ appropriate 
default values, inadequate tuning of inputs to actual conditions should not be construed as 
simulation inaccuracy, but rather an incomplete information or attention on the part of the 
modeler. Following are key considerations for default and user-input choices.  
 
• Disparities in assumed thermostat settings were a major factor attributed to the shortfall 

of actual versus predicted savings as shown a quarter of a century ago (Hirst and Goeltz 
1985). Thermostat settings were often defaulted in the original Wisconsin audit data, 
yielding a 22% over-prediction of heating energy on average, with the largest percentage 
errors for the least-efficient homes (Pigg 2001). Simulation models should default to a 
thermostat setback and setup unless there are specific data to the contrary. The 2005 
RECS data show that approximately half of households report lowering their thermostat 
during winter sleeping hours. If occupants indicate there is zoning in summer and or 
winter, modelers should relax thermostat settings if they cannot model it directly. This 
strategy is commonly used in older and poorly insulated homes to reduce energy costs. 

• It is important to distinguish between auditor-measured temperatures at the thermostat 
and the value at which the heating or cooling system is switched on. For input into 
simulation, this often means lower temperatures than the average measured in winter and 
higher temperatures in summer. This observation also has important implications for 
occupant-reported thermostat settings that tend to be biased high for heating and low for 
cooling. Moreover, the assumption of fully mixed air within a building may be a 
fundamental error—particularly in poorly insulated buildings—leading to over-estimated 
energy use. 

• Water heating set-points and hot water usage rates are important. The difference between 
a rule-of-thumb of 64 gallons per day of use, and 54 gallons per day for more homes with 
water-efficient plumbing can result in significant differences in predicted energy use. We 



 
 

found hot water use to vary from 18 to 113 gallons per day in the Homestead households. 
Hot water consumption is considerably lower in modern households (EPA 2005). 

• Simulations using the Sherman-Grimsrud infiltration model with defaulted terrain and 
shielding class III may over-estimate the energy impact of infiltration by neglecting 
localized shielding in typical suburban environments (Francisco and Palmiter 1994). 
Modifications have been incorporated into the models being used in HES to better predict 
infiltration. Houses are typically densely packed in development, and interspersed with 
trees and surrounding vegetation. Our tests found a 6% heating energy impact. 

• In cases of unknown cavity insulation levels, R-values should be defaulted to a non-zero 
value such as R-3, reducing the bias of assuming (in lieu of inspections) no insulation. 

• Foundation types must be accurately characterized. In our sample Wisconsin and Oregon, 
some basements were improperly specified as conditioned when in fact they were not. 
This problem has been observed in Minnesota (Quaid and Anderson 1988).  

• Actual counts of large appliances should be used in the simulation model. Omitting a 
refrigerator can bias results by 500 kWh or more annually. Models should also allow for 
custom specification of lighting and miscellaneous electric uses (MELs). In a sensitivity 
comparison of fixed vs. floor-area-dependent defaults for lighting and MELs on the 
Oregon sample, total whole-house predictive error decreased from -9% to less than 1%. 

• Dish- and clothes-washing operational defaults should reflect evolving practices. Surveys 
show definite trends in these behaviors (e.g., fractions of clothes washing loads done with 
cold water) (Korn and Dimetrosky 2010). Newer dishwasher use less hot water. 

 
Model default settings are clearly important—particularly when field data on home 

characteristics and operation are missing—and can contribute to inaccuracies if not reflective of 
the actual house being modeled. Figure 9 illustrates the impact of recently updated default values 
in the HES system at the whole-house level for a test suite of typical home constructions.  

 
Figure 9. Sensitivity of HES-predicted Whole-house Energy Use to Default Assumptions 

Due to extensive interactive effects, results do not sum. The default change in foundation type was 
applicable only for Jackson (MS), representing changes between the 2005 and 2009 RECS surveys 
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Toward “Accuracy 2.0” 
 
More can be done to improve energy simulation models. Recent careful evaluations of 

simulation versus metered data for a subset of homes in Rocklin, California (Backman et al., 
2010) illustrate how current hourly simulation models, specifically DOE 2.2 in NREL's BEopt 
are generally accurate, but prone to over-predict heating energy in particular and cooling to a 
lesser extent. We suggest some factors that may account for a portion of such disparity. 

 
(1) Improved modeling of natural air infiltration: Within air infiltration, evidence suggests 

that a small amount of sensible heat recovery occurs through the building envelope as the 
air flows into or out of cracks and holes. Conversely, conditioned air exfiltrating from the 
building slows down the conduction process. This beneficial heat transfer may be on the 
order of 5% in uninsulated walls and 1% for insulated envelopes (Akerman et al., 2006).  

(2) Window heat transfer with curtains and insect screening: Window insect screening and/or 
interior curtains impact thermal resistance when in place. Curtains reduce window heat 
transfer rates by about 17% (Fang 2001). This is rarely accounted for in simulations.  

(3) Partition walls: In poorly insulated buildings the influence of partition walls between the 
interior and exterior as well as cabinetry, furnishings, and wall hangings can exert a 
significant influence on envelope thermal conductance that has previously been 
overlooked (Purdy and Beausolei-Morrison 2001). When central air delivery systems 
aren’t in operation (>60% of hours) these walls reduce heat transfer by providing 
resistance in series to the exterior of the building from the main zone thermostat, in effect 
increasing the R-value of the envelope. Parametric evaluation showed that approximating 
this effect results in a 25% reduction in heating use in otherwise uninsulated homes. 

(4) Zoning: Empirical data reviewed in our validation work suggests the space conditioning 
systems that facilitate zoning—such as baseboard electric or gas hydronic systems have 
significantly lower energy use. Available research data is scant, but one study from the 
1980s suggested that A/B tests on zoned versus central gas space heating showed 31% 
lower consumption for 25 zoned systems in Pennsylvania (GRI 1987). Similar advantage 
may accrue for cooling for ductless mini-split or window AC systems. 

(5) Software user interfaces: are not typically considered in accuracy assessments. However, 
well-designed interfaces can also help to focus attention on the most important inputs 
(e.g. thermostat settings), while “smart defaults” estimate lesser factors.  
 

Conclusions 
 

Increasingly comprehensive characterization of a home and its operation substantially 
improves the accuracy of energy use estimates made with the Home Energy Saver, and 
presumably other energy modeling tools. When allowed to consider a full complement of 
physical characteristics and occupant behavior, HES predicts actual energy use within 1% of 
actual consumption, on average for large samples across a diversity of climates and housing 
types. Predictions for well-characterized individual homes are generally accurate within + 25%.  

We find strong indications that simplified, heavily defaulted asset-only models 
(disregarding behavioral effects) have less predictive power than models well-tuned to a home’s 
actual characteristics and operation. Indeed, the physical attributes of a house may be less useful 
for explaining energy use for a particular household than knowledge of occupancy and how the 



 
 

systems and equipment are used. On the other hand, well-designed asset methods have good 
predictive power for the central tendencies of a population. Even so, studies that rely heavily on 
sparse operational data risk reaching specious conclusions by ascribing inaccuracies to the 
models rather than to deficient inputs or lack of information or skill on the part of the modeler. In 
all cases, the rigor and accuracy of energy audit and data-handling processes is crucial to 
achieving improved model estimates. 

We learned that some inputs—particularly specification of thermostat set points and 
estimates of hot water consumption are critical. Given observed three-fold differences in energy 
use across otherwise identical homes, accounting for occupancy and behavioral effects is 
strongly indicated for any evaluations beyond pure-asset rating.  

In any model, fortuitous agreement on total energy does not constitute true accuracy if 
compensating end-use errors are involved. This also undercuts a model’s ability to estimate 
savings for individual measures. Sub-metered field data are necessary for conclusive validation.  

Accuracy assessments are most beneficial when integrated into the software 
development process. Accuracy trials and comparison with well-characterized data sets can help 
identify programming errors, inappropriate default values, and user-interface defects, thereby 
enabling continuous improvement of energy modeling tools. 
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